Unsupervised Learning of
Invariances in Deep Networks



Motivation and Goals

 Build a neural network which can learn
complex invariances without hardcoding them

e Biologically-inspired model of simple and
complex cells

e \WWant network to generalize to different types
of data (e.g. audio/video)



Network Structure




Learning the Weights

e We originally tried to learn V, but we did not
quite see the “peaks” we wanted (maybe due
to the data or regularization), so we set V to
be a neighborhood matrix to mimic
topographical layout of visual cortex



e n
2 3 !
=]
bt
s
- ! * 41 '
4 “
4




Learning the Weights

e We learn W using the sparse cost objective, i.e.
minimizing activations at the output, as this
produces very localized gabor filters (also
constrain rows of W to be far apart)






Using CUDA

e All training done on the GPU, which gives us
an estimated 25x speedup (with just 1600

hidden units); training on CPU would have
been infeasible

e Mini-batch approach to maximize GPU
effectiveness



Vision Task: Classification

CIFAR 10 dataset: tiny 32x32 images belonging
to 10 different classes

Training set: 50,000 images
Test set: 10,000 images
Added a softmax layer on top of network



Attempted Methods

e CIFAR data is RGB, i.e. there are three
channels for each image; we can combine
channels to improve classification (sort of)

e Combine output of both W and V layers
before softmax

e We originally trained the W-V layers on data
independent of CIFAR, but we found that
training on CIFAR itself produced different
bases






Results and Future Work

e Unfortunately, none of the attempted
methods really improved our classification
results on the CIFAR test set (note that our
bases are trained in an unsupervised setting)
— 56% using 1600 hidden units
— 59% using 10,000 hidden units
— State-of-the-art: 65% using RBM (Krizhevsky)

e |deas for future work: better features, stacking
more layers, different datasets



SparseCudaMatrix Design

o Motivation: sparse weight matrices, RBMs, etc.

o Structure: row-major and column-major
entries arrays, index into each array (supports
fast multiplication and transpose)

o Key Assumption: locations of (potentially)
nonzero entries do not change

o Performance Assumption: number of entries
per row/per col are relatively well balanced



SparseCudaMatrix Features

o« Component-wise arithmetic: assume nonzero
entries are the same and blaze through
arithmetic (see key assumption!)

o Sparse * Sparse - Sparse
o Sparse * Dense - (Dense or Sparse)

e (Dense * Dense) .* Sparse

o Implemented by dotting necessary row/col of
dense matrices

o Full matrix reductions (sum, norm, min, max)



Acknowledgements

 Prof. Andrew Ng
e Quoc Le
e Andrew Saxe



