Unsupervised Learning of Invariances in Deep Networks

Michael Harris
David Kamm
Jaehyun Park
Jeffrey Wang

Motivation and Goals

- Build a neural network which can learn complex invariances without hardcoding them
- Biologically-inspired model of simple and complex cells
- Want network to generalize to different types of data (e.g. audio/video)

Network Structure

Learning the Weights

 We originally tried to learn V, but we did not quite see the "peaks" we wanted (maybe due to the data or regularization), so we set V to be a neighborhood matrix to mimic topographical layout of visual cortex

Learning the Weights

 We learn W using the sparse cost objective, i.e. minimizing activations at the output, as this produces very localized gabor filters (also constrain rows of W to be far apart)

Using CUDA

- All training done on the GPU, which gives us an estimated 25x speedup (with just 1600 hidden units); training on CPU would have been infeasible
- Mini-batch approach to maximize GPU effectiveness

Vision Task: Classification

- CIFAR 10 dataset: tiny 32x32 images belonging to 10 different classes
- Training set: 50,000 images
- Test set: 10,000 images
- Added a softmax layer on top of network

Attempted Methods

- CIFAR data is RGB, i.e. there are three channels for each image; we can combine channels to improve classification (sort of)
- Combine output of both W and V layers before softmax
- We originally trained the W-V layers on data independent of CIFAR, but we found that training on CIFAR itself produced different bases

				3 8					*
- 8	*	- 3	. 8	*	:8			W.	
					100 SU			***	30
N.	-	8		8			- #		
		20 31	1001		4		W	380	1000
1	9		-	4		20			
		*		N. 1994	- 3			W	010
			Bull			9		ily mil	
-							*	3	11
	000								
	-							1	11
	363								No.
	=			V - 5					
	30.3							1158	l lies
>30							801	1000	20.
			100		330				
		(2			
			V-A	195	Halle .				
4	W.	V.							
			1 538186						
4	8	4	W.	5-75 F	100		8	*	(8)

Results and Future Work

- Unfortunately, none of the attempted methods really improved our classification results on the CIFAR test set (note that our bases are trained in an unsupervised setting)
 - 56% using 1600 hidden units
 - 59% using 10,000 hidden units
 - State-of-the-art: 65% using RBM (Krizhevsky)
- Ideas for future work: better features, stacking more layers, different datasets

SparseCudaMatrix Design

- Motivation: sparse weight matrices, RBMs, etc.
- Structure: row-major and column-major entries arrays, index into each array (supports fast multiplication and transpose)
- Key Assumption: locations of (potentially) nonzero entries do not change
- Performance Assumption: number of entries per row/per col are relatively well balanced

SparseCudaMatrix Features

- Component-wise arithmetic: assume nonzero entries are the same and blaze through arithmetic (see key assumption!)
- Sparse * Sparse → Sparse
- Sparse * Dense → (Dense or Sparse)
- (Dense * Dense) .* Sparse
 - Implemented by dotting necessary row/col of dense matrices
- Full matrix reductions (sum, norm, min, max)

Acknowledgements

- Prof. Andrew Ng
- Quoc Le
- Andrew Saxe