
Cortically Inspired Architectures for Action Recognition in Movie Clips

David Kamm, Jaehyun Park
Final Project Report for CS 379C
Stanford University, Spring 2009-10

June 9, 2010

1 Introduction

Video data is becoming a much more prevalent
medium for transmitting information. While ob-
ject classification in still images has been a stan-
dard task for the computer vision community, the
importance of having computers understand video
sequences is beginning to be recognized.

One task that has emerged from automated video
understanding is action classification. In this task,
the computer must correctly classify a video se-
quence which shows an action such as hugging or
shaking hands. The original task was introduced in
[4]. In their paper, they explored the correlation be-
tween action classification and scene classification.
This relationship is not explored in our project as
we are only concerned with action classification.

1.1 Motivation

Cortically inspired architectures have performed
well on the task of object classification in still im-
ages on several standard data sets. However, it is
not known how well architectures would do on the
task of action classification, which requires tempo-
ral data. Our investigation is motivated by the fact
that there is an increasing body of evidence that
suggests that the cortex makes use of temporal in-
formation which these models do not account for.
Such observations have led to methods such as Slow
Feature Analysis (SFA), which try to capture fea-
tures in scenes which do not vary over time [1].

A key component to cortically inspired architec-
tures is the notion of invariance. According to [2],
while spatial invariants have been thoroughly stud-
ied, not much work has been done towards investi-
gating implementing models with transformational
invariants. [2] defines a transformational invariant

as one in which the dynamic structure stays the
same while the spatial structure changes. An ex-
ample would be different types of sports balls flying
through the air. Even though the ball itself may
vary in shape, a transformationally invariant sys-
tem would recognize a ball moving through the air
regardless. It would appear that having some form
of transformational invariance would fit nicely in
architectures designed for action recognition.

However, most cortically inspired architectures as
described in [6] do not account for transformational
invariance as described in [2]. Thus, the major ques-
tion we tried to address was whether or not archi-
tectures like those described in [6] could perform
well on the task of action classification. Addition-
ally, we investigated the effect of adding a compo-
nent to account for transformational invariance to
such networks. This component, which does spatial-
temporal pooling, is described in section 2.3.2.

1.2 Related Works

Recently, [6] investigated the impact of varying dif-
ferent factors in cortically inspired computer vision
architectures in the context of single object recog-
nition. Such factors included the number of hid-
den layers, the type of nonlinearity used for activat-
ing simple-cell like layer, and whether learning fil-
ters held any advantage over hardwiring them. Our
project extends this work by investigating the im-
pact of some of these variables in the context of ac-
tion recognition with temporal data. At the time of
this project, we have not encountered any published
results on how well HMAX-like and other cortically
inspired architectures perform on temporal datasets
like Hollywood2.

Currently, the state-of-the-art result is by [5],
which compared various local space-time features

1

for classification on the Hollywood2 dataset. The
model used in their study was a standard bag-
of-features SVM approach for action recognition.
They attained 47.4% of average accuracy across all
action classes. They found that histograms of ori-
ented gradients (HoG) and histograms of features
(HoF) worked as the best descriptor for this dataset.

The Stanford AI lab has also started working on
this action recognition task recently, but the project
has just begun. Thus, another goal of our project
is to provide some benchmark the performance of
standard cortically inspired architectures to allow
comparison with future work.

2 Detailed Implementation

2.1 Video Dataset

We used the Hollywood2 dataset, which consists of
12 classes of human actions over 3,669 video clips
[4]. The video clips are from 69 movies and vary
in lengths. It is noteworthy that a video may be in
multiple classes; for example, a video can contain
both kissing and hugging. For our experiments, we
extracted 40 frames per each video and scaled them
down to 100 × 100 pixels grayscale images. If a
video contains more than 40 frames, we picked 40
(not necessarily adjacent) frames from the middle of
the videos. The frames are extracted such that they
can cover as much portion of the video as possible
but not too much to destroy temporal relationships
between adjacent frames. This heuristic made the
algorithms easier to implement.

2.2 Local Contrast Normalization

Before begin fed into the network, all video clips
were normalized by two different techniques intro-
duced in [6]. The subtractive normalization works
as follows. We convolve each frame with an 8 × 8
Gaussian weighting window and subtracted the re-
sult from the original image. Divisive normalization
is performed on the subtractively normalized data;
it uses the same Gaussian weighting window and
computes the “norm” for each area that it covers.
Then, the subtractively normalized data is elemen-
twise divided by these values. Formally, we had the

following formulae:

vij = xij −
∑

pq

wpq · xi+p,j+q (1)

yij = vij/max{c, σij} (2)

σij = (
∑

pq

wpq · v2
i+p,j+q)

1/2 (3)

x represents the pixel values of the original frame.
Also, v is subtractively normalized, and y is divi-
sively normalized. w is a Gaussian weighting win-
dow such that

∑
pq wpq = 1. For our experiments,

the value of c is set to the mean of σ.

Figure 1 shows an example of this process for a
single frame. Note that the normalization makes
edges look more distinguished, especially the divi-
sive normalization. Pictures are scaled for a better
view.

2.3 Network Structure

In order to determine which structure works best for
the dataset, we varied a number of different features
of the network. The basic structure of our network
is inspired by [7] and [8], and is feed-forward; no
learning takes place in the model. Each layer of the
network can be thought of as two sublayers: a sim-
ple cell-like layer and a complex cell-like layer. The
simple cell-like layer achieves selectivity by applying
filters to its input and then using a non-linear acti-
vation function on the weighted sum. The complex
cell-like layer achieves invariance by pooling the ac-
tivations of the simple cells over a small area.

2.3.1 Filters

We used different types of filters for simple cell layer
as follows.

• Random filters
Each pixel value of the filters are independently
drawn from a normal distribution.

• Orthonormal random filters
First, random filters are constructed. Then,
the filters are orthogonalized such that the
norm of each filter is 1.

• Gratings
Regularly spaced parallel lines are used as fil-
ters, varying orientation and frequency.

2

Figure 1: An example of normalization
for a single frame. (a) The original frame.
(b) The image converted to grayscale. (c)
Subtractively normalized image. (d) Divi-
sively normalized image.

• Gabor filters
Each filter is a Gabor filter with different
parameters: orientation, width, scale, wave-
length, frequency.

• Gaussian filters
Each filter is a Gaussian filter with different
mean and covariance matrix. We also scaled
and rotated the filters to make them ellipsoidal.

• Difference of Gaussian filters (DoG)
Each filter is a Difference of Gaussian filter,
which is a Gaussian filter subtracted from an-
other filter having a lower variance.

2.3.2 Pooling Mechanism

Each complex cell pools over the activation from its
receptive field to achieve invariance. The activation
of a complex cell is determined by the following for-
mula:

c =
∑

i

si · exp(p · |si|)∑
k exp(p · |sk|)

(4)

Here, c is the activation of the complex cell and
si represents the activation of the ith simple cell in
the receptive field. The qualitative behavior of the
function depends on p; if p = 0, c is the mean of
si. As p approaches infinity, c approaches si having
the maximum magnitude. For our experiment, we
varied p from 0 to 10 to see its effect on classification
accuracy.
In our architectures, we used two types of pool-

ing. The first type of pooling was spatial only. In
this, each complex cell pools over the activations of
simple cells for one frame of the movie sequence.
We can represent this efficiently by convolving a
softmax kernel over each of the frames in the movie
sequence to get the complex cell activations.
The second type of pooling we tried also factored

in the temporal nature of the data. These archi-
tectures pool over the activations of retinatopically
arranged simple cells over multiple frames. The ac-
tivations are computed efficiently by convolving a
“cube” kernel over the activations of the simple cells
spanning multiple movie frames.

2.3.3 Number of Layers

As mentioned earlier, each layer in our model can be
thought of as a pair of simple-complex cell sublay-
ers. The simple cell-like layer employs a non-linear

3

activation on filtered inputs while the complex cell-
like performs a softmax operation on its adherents
from the simple cell-like layer below it. In our ex-
periments we varied the number of simple-complex
cell layers. Models either had one simple-complex
cell layer or two.

2.3.4 Classification

For each video, activations of the cells in the highest
layer were concatenated together to form a feature
vector. Then, all feature vectors were passed to a
support vector machine (SVM) to train a model and
make predictions for test data. We ran the SVM
for six different values for parameter λ from 10−3

to 102 to find the best result. We used 901 training
examples and 972 test data.

3 Experimental Results

3.1 Local Contrast Normalization

To test the effect of local contrast normalization on
classification accuracy, we passed raw pixel values
as features into the SVM. Below is the result from
this experiment.

Normalization Accuracy

Grayscale 13.3%
Subtractive 16.3%
Divisive 17.6%

Table 1: Raw pixel classification accuracy
using different normalization techniques

Another similar experiment was performed using
activations from grating filters as features, as shown
in Table 2.

Normalization Accuracy

Grayscale 18.3%
Subtractive 20.9%
Divisive 20.8%

Table 2: Classification accuracy using dif-
ferent normalization techniques and grat-
ing filters

As it can be seen from above, local contrast nor-
malization helped classification. Knowing that nor-
malized data performs better, we also compared the

the classification results using orthonormal random
filters as below:

Normalization Accuracy

Subtractive 19.1%
Divisive 23.3%

Table 3: Classification accuracy using
different normalization techniques and or-
thonormal random filters

For the rest of our experiments, divisively nor-
malized data was used.

3.2 Filters

We used different sets of filters for simple cells, us-
ing a single-layered network structure with softmax
pooling. The result is shown in Table 4.

Filter Accuracy

Raw pixel 17.6%
Random 22.5%

Orthonormal random 23.3%
Grating 20.8%
Gabor 21.4%

Gaussian 17.6%
DoG 14.8%

Table 4: Classification accuracy using dif-
ferent filters

3.3 Pooling Mechanism

To test the effect on the pooling mechanism, we
tried different values for p for the softmax formula as
the following. For the experiment, 120 orthonormal
random filters were used. The result is shown in
Table 5.

p Accuracy

0 12.0%
1 12.9%
10 14.3%

Table 5: Classification accuracy using dif-
ferent pooling mechanism

4

3.4 Number of Layers

We also tried stacking another layer of simple cells
and complex cells on top of the network, using the
activations of the first layer’s complex cells as in-
puts. For this experiment, we used Gabor filters on
both layers with different scales and receptive field
sizes.

Layer(s) Accuracy

1 21.4%
2 13.0%

Table 6: Classification accuracy using dif-
ferent number of layers

4 Discussion

4.1 Local Contrast Normalization

As [6] pointed out, local contrast normalization in-
creased the classification accuracy. Among two dif-
ferent methods subtractive normalization and di-
visive normalization, divisive normalization per-
formed slightly better than subtractive normaliza-
tion, and both outperformed the results using orig-
inal pixel values. This might be because local nor-
malization makes edges look more distinguished.

4.2 Filters

Although random filters are extremely easy to gen-
erate, they perform reasonably well. Moreover, in
our experiments, randomized filters performed the
best with softmax pooling. Theoretically, it is not
clearly known what random filters are capable of.
However, according to [6], random filters achieved
almost 63% accuracy on Caltech-101 object recogni-
tion task, when used with non-linearities and proper
pooling layers. This result implies that random fil-
ters operate in a rather complex way, but do pro-
duce surprisingly good results, and our results con-
firm this conjecture.

Gabor filters are known to be good at achieving
translational invariance when combined with MAX-
like pooling mechanism. Indeed, only with 48 Ga-
bor filters, the network was able to correctly predict
21.4% of the test data.

Other type of filters we tried were the Gaussian
and DoG filters. However, we found that even when

combined with the MAX-like pooling mechanism,
models with these filters did not perform as well
as those with Gabor filters. Also, it is not clearly
known what Gaussian filters can do when used in
simple cells.

4.3 Pooling Mechanism

As [7] claimed, we could confirm that a MAX-like
operation for the complex cells performed better
than linear SUM operation. This result supports
the idea that MAX-like operations are used glob-
ally in visual cortex, regardless of whether the data
is a still image or a video.

4.4 Number of Layers

The network described in [8] had two layers of
simple-complex cell-like sublayers. Furthermore, [6]
found that architectures with two stages of feature
extractions performed better on object classification
that those with just one. Nonetheless, we weren’t
able to reproduce this observation in our experi-
ments. One of the reasons may have been that
we did not explore the parameter space sufficiently
with the models we implemented.

4.5 Use of Temporal Information

We found that our temporal pooling extension ac-
tually decreased the classification results. We spec-
ulate that one of the reasons is because this pool-
ing mechanism introduces another parameters, the
number of frames to pool over, which we did not
have very much time to tune. For future work, we
feel that using temporal filters in the simple cell-
like layer as in [2] would be more consistent with
our pooling mechanism.

4.6 Limitations

Most importantly, our model does not involve learn-
ing, and relies only on the given structure and fil-
ters. Although we could take advantage of these
customizable features of the network in order to in-
vestigate the nature of action recognition task in
videos, we speculate that learning the filter banks
ultimately should take place [6].
Secondly, our hard-wired filters were probably

not tuned enough to produce the best result, or at
least somewhat close to it. Because of the small

5

input size (100×100 pixels), the result of our simu-
lation was very sensitive to the parameters such as
the number of filters, the size, the area of receptive
field, and so on.

Our experiments were also limited by the physical
memory size of the machines; our machines didn’t
have large enough memory to hold big feature ma-
trices, which in turn severely limited the size of the
filter banks and the number of cells.

4.7 Possible Improvements and Future
Works

We conjecture that the recognition accuracy can be
boosted significantly by using the temporal relation-
ships between adjacent frames. This is what we
didn’t exploit as much as possible in our experi-
ments; our model produces the same results even if
all frames are permuted in the same way. However,
temporal context is very important since the same
set of frames can be seen in two different actions
depending on the order of the frames are shown.
For example, a person sitting down can be viewed
as a person standing up if we reverse the order of
frames.

Also, as mentioned earlier, we think that learning
the filter banks in either a supervised way or an
unsupervised way can help the recognition task. To
learn more complex features, it might be essential to
stack more layers to the network ([7], [8]), although
our experiments didn’t show a strong evidence that
this is the case.

There are much more ideas that we can try, and
we will continue working on this project during this
summer and try to achieve better results than the
state-of-the-art result.

5 Acknowledgements

Thanks to Serena Yeung for providing us code base
to build upon and to Quoc Le for technical help and
advice on the project. Also, thanks to Tom Dean
for leading CS 379C and providing us with a great
insight on this field.

References

[1] P. Berkes, L. Wiskott. Slow feature analysis yields a rich
repertoire of complex cell properties. Journal of Vision
(2005), 5, 579–602.

[2] C. F. Cadieu, B. A. Olshausen. Learning Transformational In-
variants from Natural Movies. Advances in Neural Informa-
tion Processing Systems (NIPS), 21:209–216, 2009. D. Koller
and D. Schuurmans and Y. Bengio and L. Bottou, MIT Press,
Cambridge, MA.

[3] A. Hyvarinen, J. Hurri, and P. O. Hoyer. Natural Image
Statistics - A probabilistic approach to early computational
vision. Springer-Verlag, 2009.

[4] M. Marsza�lek, I. Laptev, and C. Schmid. Actions in Context,
IEEE Conference on Computer Vision and Pattern Recogni-
tion. 2009.

[5] H. Wang, M. Ullah, A. Klaser, I. Laptev, and C. Schmid.
Evaluation of local spatio-temporal features for action recog-
nition. BMVC, 2009.

[6] K. Jarrett, K. Kavukcuoglu, and Y. Lecun. What is the Best
Multi-Stage Architecture for Object Recognition?

[7] M. Riesenhuber, T. Poggio. Hierarchical models of object
recognition in cortex. Nature Neuroscience, 2(11):1019–1025,
November 1999.

[8] T. Serre, L. Wolf, S. Bileschi, M. Riesenhuber, and T. Pog-
gio. Object recognition with cortex-like mechanisms. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
29(3):411–426, 2007.

6

